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101 uses of a quadratic equation: Part II

by Chris Budd and Chris Sangwin

In 101 uses of a quadratic equation: Part I in issue 29 of Plus we took a look at quadratic equations and saw
how they arose naturally in various simple problems. In this second part we continue our journey. We shall
soon see how the humble quadratic makes its appearance in many different and important applications.

Let us begin where we left off, with the quadratic curves known as the circle, ellipse, hyperbola and parabola.
These were known and have been studied since the ancient Greeks, but apart from the circle they did not seem
to have any practical application. However, in the 16th century the time came for them to change the world.
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With the coming of the Renaissance, deep thinkers started to look at the world in a different way. One of these
was Copernicus, who made history by proposing that the Earth went round the Sun rather than the other way
round. Copernicus thought that the orbit of the Earth was a circle − partly because it is very close to a circle,
and also because the circle, being so symmetric, was regarded as the most perfect possible curve. Things
stayed like this until Kepler, using some very careful observations of Tycho Brahe, found some discrepancies
between the predictions of Copernicus' theories and the experimental data. What Kepler discovered was that
the planets did not go round the Sun in circles, instead they went round in ellipses. Kepler's rules then fitted
the observations perfectly. At last the conic sections that we saw in the last article came into their own, 1500
years after they were discovered. Politicians and newspaper journalists please take note! It didn't stop there:
other celestial objects, such as certain comets, were found to move along hyperbolic orbits. These remarkable
discoveries by Kepler helped to usher in the modern world.

Quadratic equations not only described the orbits along which the planets moved round the Sun, but also gave
a way to observe them more closely. The key to further advances in astronomy was the invention of the
telescope. Using a telescope Galileo was able to observe the moons of Jupiter and the phases of Venus, both
of which gave support to the Copernican theories. Later on, great reflecting telescopes were used to probe the
mysteries of the Universe. In recent years, giant radio telescopes have been used both to listen for aliens and
to send messages which a potential alien might pick up. Galileo's telescope used lenses, the shape of which
was formed by two intersecting hyperbolae. The reflecting telescope, invented by Newton (see later) has a
mirror for which each cross section takes the shape of a parabola! The same parabolic shape works just as
well for the bowl of a giant radio telescope, a shaving mirror and a satellite TV dish. Truly, quadratic
equations lie at the heart of modern communications.
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Galileo, why quadratic equations can save your life and
'that' drop goal

The fit between the ellipse, described by a quadratic equation, and nature seemed quite remarkable at the time.
It was as though nature said: "Here is a curve that people know about, let's make some use of it."
Understanding why this was the right curve had to wait till Galileo and then Newton. The answer is perhaps
the single most important reason that quadratic equations matter so much: it is the link between quadratic
equations and acceleration. It was Galileo who first spotted this link at the beginning of the 17th century.

Quadratic equations are necessary for an understanding of acceleration. Image freeimages.co.uk

Most people have heard of Galileo, a colourful Professor of Mathematics at the University of Pisa. The final
part of his career centred on an epic battle with the Spanish Inquisition on the validity of the Copernican view
of the solar system. However, before this he devoted much of his life to a study of how things move. Long
before Galileo, the Greek scientist Aristotle had stated that the natural state of matter was for it to be at rest.
Aristotle also said that heavier objects fell faster than lighter ones. Galileo challenged both of these pieces of
accepted wisdom. At the heart of Galileo's work was an understanding of dynamics, which has huge relevance
to such vital activities as knowing when (and how) to stop our car and also how to kick a drop goal.

At the heart of this is an understanding of the idea of acceleration and the role that quadratic equations play in
it.

If an object is moving in one direction without a force acting on it, then it continues to move in that direction
with a constant velocity. We can call this velocity . Now, if the particle starts at the point  and moves
in this way for a time , then its resulting position is given by  Usually the particle has a force acting
on it, such as gravity for a rugby ball or friction in the brakes of a car. Fast−forwarding to Newton we know
that the effect of a constant force is to produce a constant acceleration. If the starting velocity is , then the
velocity  after a time  is given by . Galileo realised that you could go from this expression to
working out the position of the particle. In particular, if the particle starts at the position  then the
position  at the time  is given by
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This is a quadratic equation linking  to  with many major implications for all of us. For example, suppose
that we know the braking force applied to a car: then this formula allows us to work out either how far we
travel in a time , or conversely, solving for , how long it takes to travel a given distance.

A very important application is to find the stopping distance of a car travelling at a given velocity . Suppose
that a car is travelling at such a speed, and you apply the brakes, how long will it take to stop? Even
journalists might be interested in this question, especially if it means avoiding an accident. In particular, if a
constant deceleration  is applied to slow a car down from speed  to speed 0, then solving for  and
substituting gives the stopping distance :

Even a journalist might care. Image freeimages.co.uk

The reason that this result is so important for all of us is that it predicts that doubling your speed quadruples,
rather than doubles, your stopping distance. In this quadratic expression we see stark evidence as to why we
should slow down in urban areas, as a small reduction in speed leads to a much larger reduction in stopping
distance. Solving the quadratic equation correctly here could, quite literally, save your, or someone else's, life!

The simple quadratic formula relating time to distance is also the basis of the science of ballistics, which looks
at the way that objects move under gravity. In this case, an object falls in the  direction with a constant
acceleration . In contrast, it moves in the  direction horizontally at a constant velocity (in the absence of air
resistance). If it starts at the point  with velocity  in the  direction and velocity  upwards, then
Galileo was able to show that the position at time  is given by

Put another way, we have

yet another quadratic equation, this time relating  to . What was remarkable was that the resulting shape of
the trajectory was, of course, a parabola.
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Suppose now that you are in the final minute of a rugby match and you have to kick a perfect drop goal. To do
this you must kick the ball at the correct angle and velocity so that when it travels a distance x to the goal it is
at the right height y to go over the goalposts. To do this you must solve a quadratic equation. Of course in the
heat of the moment you may not have time to do this, which is where practice comes in! More seriously, the
parabolic equation for the particle trajectory − with modifications to allow for air resistance, the spin of the
projectile and also the spin of the Earth − serves as the basis for artillery calculations...a fact not lost on the
military following Galileo's discovery.

We leave Galileo with the discovery of the pendulum. Around the year 1600, Galileo was attending a church
service in Pisa (he had to). Bored by the sermon, he started watching a chandelier swing to and fro − and
made a remarkable discovery: the time taken for a swing of the chandelier was independent of its amplitude.
This discovery led to the invention of the pendulum and various timepieces such as the Grandfather clock, but
at the time Galileo could not explain it. To do so we need another quadratic equation.

Newton, quadratic equations and singing in the shower

Newton was born in the year that Galileo died and went on to totally transform the way that we understand
science and the role that mathematics plays in scientific predictability. Newton was inspired by the work of
both Galileo and Kepler. These scientific giants had accurately described phenomena of dynamics and
celestial mechanics, but neither had formulated scientific explanations. It was left to Newton to provide the
mathematical explanation of the phenomena that they observed.

Firstly, he formulated the three laws of motion, which explained Galileo's observations. Secondly, he
described the fundamental law of gravitation, which was that two masses were attracted to each other by a
force inversely proportional to the square of the distance between them. By using geometrical arguments he
was able to prove that such a law of force implied that the planets had to move around the sun in a conic
section. (Of course, it was a tremendous fluke that the inverse square law led to orbits which could be
explained in terms of known curves!) Newton also worked in the field of optics, and recognised that the
telescopes that Galileo had used (based on lenses) caused problems by refracting light of different colours in
different ways. He overcame this by designing a telescope based on a mirror. The best shape for the mirror, to
bring all points into focus, was none other than the parabola, leading to the reflecting telescopes we saw
earlier.

However, Newton had further aces up his sleeve. While he used geometrical arguments to explain things to
his contemporaries, he had also (in parallel with Leibnitz, but independently from him) developed calculus.
This was a mathematical theory of the way that things change and it was perfect for describing objects acting
according to his laws of motion. The fundamental device in the application of calculus to the real world is the
differential equation, which relates the change in the conditions of an object to (for example) the forces acting
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on them. Differential equations are at the heart of nearly all modern applications of mathematics to natural
phenomena, from understanding how heat flows through a bar to the way that animal coat patterns develop
(see How the leopard got its spots, also in this issue of Plus). Their applications are almost unlimited, and they
play a vital role in much of modern technology.

When Newton was alive this was all still in the future! But one problem he did consider was the motion of the
pendulum which so interested Galileo. This motion can be described in terms of a differential equation, and in
the case of small swings of the pendulum this equation can be solved to find the time of the swing. Solving it
requires finding the solution to a quadratic equation!

If  is the angle of swing of the pendulum, then Newton realised that there were numbers  and  which
depend on such features as the length of the pendulum, air resistance and the strength of the gravitational
force so that the differential equation describing the motion was

Here  is time,  is the acceleration of the pendulum and  is its velocity.

It is possible to find approximate solutions to equations such as this by using a computer, and this is the
approach generally used for the very complex differential equations encountered in modern technology.
However, the mathematician Leonhard Euler devised a means of solving this particular equation that relied on
the solution of a quadratic equation. Euler suggested the existence of a solution of the form

where  is the basis of natural logarithms. The importance of this function is that

Substituting into the differential equation and dividing by  gives the following equation for :

This is very familiar! All we need to do to solve the original differential equation is to solve this quadratic
equation and substitute back for . By doing this we can accurately predict the behaviour of the pendulum.

What is also fascinating is that the different types of solution of the quadratic equation lead to quite different
solutions of the differential equation. If b2>4ac, then the quadratic equation has two real solutions.
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The same differential equation has a solution looking like the diagram to the right. Physically this solution
corresponds to a pendulum with a lot of friction (or a pendulum moving in a liquid such as water).

In contrast, if b2ac, then the same differential equation has oscillating solutions which look like the diagram to
the left. These are more like the motions of the pendulum that we are familiar with.

The difference between these two types of motion is very profound and occurs because, in the second case,
the solutions of the quadratic equation are complex and involve the square root of −1. We will look at these in
more detail presently.
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The new karaoke

The discovery that differential equations of this sort (they are called second order constant coefficient
equations) can be solved by using quadratic equations has extraordinary importance. The reason is the
universality of differential equations, and the fact that the solutions of the resulting quadratic equation tell us
whether the solutions are likely to grow, stay the same size, or get smaller. This is very important to engineers
who are trying to design safe structures and machines. In these structures, small disturbances which grow will
rapidly lead to structural failure (called instability). Very similar considerations apply to electrical circuits. In
practice, often it is by solving the above quadratic equation and finding whether the roots w have certain
properties that a safe machine can be designed. Sometimes growing solutions can be useful, especially when
linked to the phenomenon of resonance. Imagine that you vibrate the pendulum up and down at a frequency of
f. Certain values of f lead to much larger responses than others. This is resonance. You encounter resonance
every time that you tune a radio or sing in the shower. It is the resonant notes of the shower that sound the best
(and loudest) when you sing them. In the case of the swinging pendulum, the resonant frequency is given by

Quadratic equations take to the air

The link between quadratic equations and second order differential equations is no coincidence: it is all tied
up with the link between force and acceleration described in Newton's second law. When Newton formulated
this law he was thinking mainly of the motion of rigid bodies. However, it was soon realised that the same
laws could be applied to the way fluids such as water and air moved. In particular, it is possible to use
Newton's laws to find relationships between the speed of a fluid and its pressure. Sophisticated versions of
these laws (called the Navier−Stokes and related partial differential equations) are solved on large computers
to forecast the weather. However, a particular solution, valid for many types of fluid flow, was one of the key
ingredients in the discovery of the basic principles of flight. The consequences of this have been
immeasurable and are linked (as ever) with a quadratic equation called the Bernouilli equation.

Quadratic equations take to the air. Image DHD Photo Gallery

The Bernoulli family comprised many mathematicians who both individually and together made enormous
advances in mathematics. One of them, Jacob Bernoulli, looked at the way air moved. He discovered that if
you look at the steady flow of air with speed  and pressure , and an air particle is moving at a height ,
then there is a constant  (the energy of the air particle) so that
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Significantly, if  is constant then this formula predicts that if  increases then  decreases. This is called the
Bernouilli effect. This result is a direct consequence of Newton's laws of motion and only applies to smoothly
moving fluids which are not too sticky (viscous). However, this quadratic equation is accurate enough to
predict the behaviour of the flow of air over the wing of an aircraft and to see why an aircraft flies.

There are a number of simple experiments which can demonstrate the Bernoulli effect. One of the simplest is
to suspend two ping−pong balls on cotton thread a couple of centimetres apart. Then blow gently between
them and watch what happens. Rather than being blown apart, they move together.

This shows that the pressure exerted by a fluid (the air) decreases as the speed of the fluid increases. You
might expect a moving fluid to exert more pressure, but here we are talking about the lateral pressure, not the
force generated by the momentum of the fluid itself. That is the force you feel when the wind blows.

A more extreme experiment, which really works, involves another ping−pong ball. This is released from rest
in an upside−down funnel with a downward air flow.

If you use a steady flow of the air and a big enough funnel, you should be able to balance the ping−pong ball.
In practice a backwards vacuum cleaner, a ping−pong ball and a large kitchen funnel work very well indeed.
This looks very odd as the downdraft of air seems to suck the ball up. However, it is perfectly in agreement
with the physical principle!

Why a complex quadratic equation leads to the mobile
phone

Let us pause and think for a moment about what happens when we square a number: that is to say, when we
take  and calculate . One thing we notice is that, no matter what value we take for ,  is always
non−negative. As a consequence,  cannot have a solution. The way mathematicians coped with this
problem was to cheat and just define a solution into existence! The letter  is used to represent a solution to

so . So,  can't be a real number and because of this it is called an imaginary number. Notice also that
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So  is also a solution to the equation .

Historically, imaginary numbers first came to light when trying to solve cubic equations, rather than
quadratics. What was most perplexing was that in using these subtle and imaginary numbers it was possible to
solve cubic equations. In fact, the case that needed imaginary numbers during the calculation turned out to
have real solutions!

This mathematical fix needs to be justified! Otherwise we might just keep inventing new kinds of numbers
every time we encounter a problem we can't solve. Eventually we would run out of letters, and in any case we
would gain no understanding of how all these new kinds of numbers related to each other. The whole thing
would be hopeless. The very deep mathematical result is that actually inventing new kinds of numbers turns
out to be quite unnecessary. Using a combination of real and imaginary numbers, known as complex numbers,
turns out to be sufficient to solve virtually all mathematical problems! The first person to really use imaginary
numbers with confidence was Leonhard Euler, who lived from 1707 to 1783, and one of his other wild and
daring mathematical calculations is explained in An infinite series of surprises by one of us (Chris Sangwin)
in issue 19 of Plus.

The imaginary number  occurs in one of the most beautiful formulas in mathematics, which relates ,  (the
base of the natural logarithms) and . This is

This is a special case of a more general result, which links the exponential function  with  and 
via complex numbers. Euler discovered that

Both  and  are oscillating terms, which is to say they repeat periodically. This formula provides
an insight into how the differential equation which modelled the damped pendulum, which has a solution of
the form , can have oscillating solutions. If  is imaginary, or complex, Eulerâ€™s formula allows the
exponential term to be rewritten as a combination of  and .

Another very significant application of the imaginary number  to the physical world comes from quantum
theory. This theory deals with phenomena at a microscopic level where quantities (such as electrons or
photons of energy) can behave both like particles and oscillating waves. As we have seen, oscillating
behaviour can be described using . The fundamental equation of quantum theory which is used to calculate
the "wave number" of a quantity (the probability of it being in a particular location) is SchrÃ¶dingerâ€™s
equation. This is a (partial) differential equation involving , which can be written as

This equation has very many practical applications. By using it to predict the motion of the elections and holes
in semi−conductors it is possible to design integrated circuits with huge numbers of components which can
perform amazingly complex tasks. Such circuits are at the heart of much modern technology, including
computers, cars, DVD players and mobile phones. Indeed, a mobile phone works by converting your speech
into high frequency radio waves and the behaviour of these waves can then be calculated using further
formulae involving . So we can say with justification that without the simple quadratic equation  the
mobile phone would never have been invented.
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A touch of quadratic chaos

Imagine you are a biologist or ecologist who is interested in the way the population of a particular species of
insect changes from year to year. Some insects have only one generation per year, and a simple model
assumes that the population in the next year will depend only on the population in the current year. So, if xn is
the population in year n, then xn+1 will be some function of xn.

One very simple model assumes that a proportion, axn, say, breed successfully and that bxn
2 die from

overcrowding. To simplify the equations we may re−scale the coordinates to obtain the following quadratic
equation:

xn+1 = rxn(1−xn)

for some fixed number r >0 and initial population x1. Strictly speaking, we have defined a whole family of
quadratics, labelled by the constant r. Each member of this family is known as a logistic map.

It is well worth performing some numerical experiments to investigate the behaviour of these insect
populations. You can try these yourself using a spreadsheet such as Excel. To do this place the initial
population into cell A1, which should be between 0 and 1. Then, type the formula

= 4*A1*(1 − A1)

into the cell A2. This has the effect of making A2 equal to the population in year 2, given a value of r=4.
Now, copy the contents of the cell A2 into A3, A4 and so on. The great thing about Excel, and other
spreadsheet packages, is that it automatically changes the reference to A1 in the formula to the cell above.
Then Excel will automatically calculate the insect population for a number of years. You can change the
initial population in cell A1. You can also change the value of r, which in the case of the example above was
set to 4. If this is done, you will have to copy the new formula into all the cells again. The adventurous can
also plot the values of the insect population on a graph.
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The figure above shows the logistic map with x1=0.2 and r=3.7. Notice the very complex−looking and
unpredictable behaviour from the system. To the left is a graphical plot. The image to the right is known as
cobwebbing, since it looks a bit like a spider's web. This is a graphical procedure to help you visualize the
behaviour of insect populations.

To draw a cobweb plot, the first thing to do is choose the value of r and then plot the quadratic on the cobweb
diagram. Then the initial population, x1 on the x−axis and also the line y=x. The value of x2 is rx1(1−x1) by
definition, which is just the value of x1 on the graph. So draw a vertical line from x1 until it hits the graph.
Next draw a horizontal line from x2 to the line y=x. Now we have the position of x2 on the x−axis and can
repeat the process. To find x3, we can just draw another vertical line to the graph, and then a horizontal line
back to the line y=x. This graphical procedure can be repeated, without becoming blinded by lists of numbers.
You can get an excellent sense of what is going on with a cobweb diagram.

The interactive applet below will allow you to experiment with different values of r by pulling the maximum
of the quadratic up and down. The maximum turns out to be r/4 in the logistic map, and so the applet allows
you to use r between 0 and 4. You can also change the initial population by pulling the horizontal bar with the
mouse.

[YOUR BROWSER DOES NOT SUPPORT THIS APPLET]

Java Applet by Dr. A. D. Burbanks

These quadratic logistic maps demonstrate chaos, which is a modern and exciting area of applied
mathematics. Chaos is used to describe a system which behaves in an apparently random way, even when the
system itself is not random. What is most surprising is that:

Very simple systems behave in very complex ways.

For example, below we show what happens when you take two initial populations that are very close together.
In particular we start the system with x1=0.2 and then x1=0.2001, which are very close indeed. After only a
few generations the populations are doing completely different things! This kind of behaviour would be a
disaster if you wanted to forecast the populations, but had to estimate the initial populations.
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Actually, chaos says a lot more. Indeed, if you make any error at all in estimating the initial insect
populations then very soon your prediction will be hopelessly wrong. You should try some experiments
yourself using a computer and the logistic map with r=4 to get a feeling for how this works. As you will
discover, not all values of r will produce chaos. So instead of trying to forecast the insect population, which
may be impossible, scientists and mathematicians try to understand when a particular system is chaotic.
Knowing this allows us to know when a prediction is accurate and when it is hopeless. For more examples of
chaos, see Finding order in chaos by Chris Budd, from issue 26 of Plus.

Conclusion

We have shown that the quadratic equation has many applications and has played a fundamental role in
human history. Here are a few more applications in which the quadratic equation is indispensable. As a
challenge, can you make this list up to 101?

That drop goal, grandfather clocks, rabbits, areas, singing, tax, architecture, sundials, stopping, electronics,
micro−chips, fridges, sunflowers, acceleration, paper, planets, ballistics, shooting, jumping, asteroids,
quantum theory, chaos, windows, tennis, badminton, flight, radio, pendulum, weather, falling, shower,
differential equations, telescope, golf.
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I'm not scared of you any more!

Afterword

This article was inspired in part by a remarkable debate in the British House of Commons on the subject of
quadratic equations. The record of this debate can be found in Hansard, United Kingdom House of Commons,
26 June 2003, Columns 1259−1269, 2003. This is available on the Hansard website.
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